
Conformal Field Theory and Gravity
Solutions to Problem Set 11 Fall 2024

1. BTZ black hole

Lorentzian AdS3 (with closed timelike curves) is defined as

−(X0)2 + (X1)2 + (X2)2 − (X3)2 = −`2 (1)

which has the global solution(
X0

X3

)
= ` coshλ

(
cos(t/`)
sin(t/`)

)
,

(
X1

X2

)
= ` sinhλ

(
cos(t/`)
sin(t/`)

)
, (2)

with λ ∈ R, ϕ ∼ ϕ+ 2π, and t ∼ t+ 2π` (this represents the closed timelike curve). The
metric reads

ds2 = − cosh2(λ) dt2 + `2 dλ2 + `2 sinh2(λ) dϕ2 (3)
and at this point we can “unroll” the time coordinate t, taking t ∈ R. After passing to a
new coordinate r ∈ R via

sinhλ =
r

`
, (4)

the projected metric reads

ds2 = −f̃(r) dt2 +
dr2

f̃(r)
+ r2 dϕ2, f̃(r) = 1 +

r2

`2
. (5)

(a) The metric of the exercise is very similar to (5), except we have

fBTZ(r) = f(−8GM ; r), f(c; r) := c+
r2

`2
(6)

instead of f̃(r). Notice that GM is dimensionless, since by its definition the mass
dimension of G is [G] = 2− d = −1 in 2 + 1 spacetime dimensions. In fact, we can
study the curvature tensors of the metric (34) keeping c arbitrary. Then for any c,
we have the identity1

Rµνρσ = − 1

`2
(gµρgνσ − gµσgνρ) (7)

so locally, gµν is maximally symmetric, with scalar curvature R = −6/`2. Since this
holds for any c, it holds in particular for fBTZ.

(b) Since the metric only depends on r, it’s easy to see that ξ(1) = ∂t and ξ(2) = ∂ϕ are
Killing vectors. The global AdS3 metric, with c = 1, has 6 Killing vectors, since that
is the dimension of SO(2,2). However, the 4 remaining ones cease to be solutions of
Lξgµν = 0 when c 6= 1.2

1This is easiest to check in Mathematica.
2To fully explore this claim, one should actually write down the equations Lξgµν = 0, which is a set

of 6 equations (since gµν has 6 independent components) for 3 functions (ξt, ξr, ξϕ). This is a tedious
exercise.
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(c) The norm of the timelike Killing vector is

−ξ(1) · ξ(1) = fBTZ(r) =
r2 − r2h

`2
. (8)

This is positive (resp. negative) if r > rh (resp. r < rh), so r = rh is indeed a
Killing horizon.

(d) Let’s use the Brown-York formalism. Given a Killing vector ξa (pushed to the
boundary), the corresponding conserved charge is

Q[ξ] = lim
r→∞

∫
∂Σ

dd−2x
√
σ naTabξ

b = lim
r→∞

1

8πG

∫ 2π

0

dϕ
√
γ∆Kabn

aξb (9)

with
∆Kab := Kab − γabK − 1

`
γab. (10)

Here Kab is the 2 × 2 projection of the exterior curvature Kµν = −∇ν(σνµ), the
vector field σµ∂µ =

√
fBTZ(r)∂r is the unit-normalized outward facing normal, and

γab is the 2 × 2 metric of the boundary of AdS. Finally na is the projection of nµ,
the unit normal orthogonal to the timeslice Σ.
A straightforward computation (keeping c arbitrary for now) gives

Kµν(r) = r
√
f(r)× diag

(
1

`2
, 0,−1

)
. (11)

This is indeed of rank 2, since Kµν = 0. Projecting to the boundary coordinates
xa = {t, ϕ} gives the non-degenerate 2× 2 matrix

∆Kab = − c

2
× diag

(
1

`
, `

)
+O(1/r2) (12)

with individual components

∆Ktt ≈
4GM

`
, ∆Kϕϕ ≈ 4GM`, ∆Ktϕ = 0. (13)

Setting c to its BTZ value c = −8GM , and discarding O(1/r2) terms. In this
formula, the subtraction term (1/`)×γab is crucial — without it, terms proportional
to r appear that diverge near the boundary of AdS.

Let’s inspect the large-r behavior of the BY integrand (38) in more detail. The (d-
2)-dimensional boundary metric is σϕϕ = r2, so

√
σ = r. Yet nµ = 1√

fBTZ(r)
(1, 0, 0),

so after projecting to the boundary, we have na ∼ (`/r, 0) as r → ∞. It follows
that

√
σna ∼ (`, 0) as r → ∞. Thus, if we specialize to the timelike Killing vector

ξa = (1, 0), we get

E = lim
r→∞

1

8πG

∫ 2π

0

dϕ
√
σnt∆Ktt +O(1/r) =

1

8πG
· 2π` · 4GM

`
(14)

= M. (41)

Note that this is a dimensionful result; we could have defined the conserved charge
with an additional factor of ` to make it dimensionless.

In passing, you can easily show that the spin J of the BTZ black hole from the
exercise vanishes, since ∆Ktϕ = 0.
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(e) Intrinsically, the surface gravity κ is defined as

ξµ∇µξ
ν = κξν (42)

which is to be evaluated at the Killing horizon. This is awkward to compute in the
metric (5), since grr → ∞ precisely at r = rh. Either we can change coordinates to
something akin to Kruskal coordinates, or we use the formula

κ2 = −1

2
∇µξν∇µξν

∣∣∣∣
r=rh

, (43)

which works in any coordinate system (for a derivation, see Wald, Eq. (12.5.14)).

What remains is to compute ∇µξν for the Killing vector ξµ∂µ = ∂t. This is straight-
forward, for example in Mathematica. We find that

∇rξt = − r

`2
, ∇tξr =

r

`2
, (44)

and ∇µξj = 0 for all other components. (In particular, ∇µξ
µ +∇νξ

µ = 0, as befits
a Killing vector.) Moreover, gttgrr = −1, so ∇µξν = −∇µξν numerically. It follows
that

κ2 = −1

2
(−1) · 2

[rh
`2

]2
⇒ κ =

rh
`2

=

√
8GM

`
. (45)

(f) The “area” A of a black hole in 2 + 1d is its circumference.3 For the BTZ black
hole, this is A = 2πrh. Hence the Bekenstein-Hawking entropy reads

SBH =
A

4G
=

πrh
2G

=

√
2M

G
π`. (46)

(g) The Euclidean version of the BTZ geometry is

ds2 = f(r)dr2 +
dr2

f(r)
+ r2dϕ2. (47)

where τ ∼ τ + β for some inverse temperature β > 0. Just as before, you can check
that locally, this is a maximally symmetric space with R = −6/`2 for any c, and in
particular for c = −8GM . Now, the function fBTZ(r) has a root at r = rh. By the
conical defect trick, we must set

β =
4π

f ′(rh)
⇒ T =

1

β
=

√
2GM

π`
.

This computes the temperature of the BTZ black hole. Finally, since T = κ/(2π),
we predict that

κ = 2πT =

√
8GM

`
.

This matches the previous result.
3A black hole in a spacetime of total dimension D = d+1 has a surface area A ∼ Rd−1 for some length

scale R. At the same time, in d dimensions, the Newton constant has mass dimension [G] = 2−D = 1−d.
Therefore S = A/(4G) is dimensionless in any dimension, as befits an entropy.
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(h) The central charge in AdS3 is related to the AdS radius via

c =
3`

2G
.

We can now apply the Cardy formula with E = M`, which gives

SCardy =

√
2M

G
π`.

This matches precisely with the Bekenstein-Hawking entropy SBH that you com-
puted previously.

2. The Cardy formula

(a) We interpret Z(β,R) as the partition function on a torus which has circumferences
β and 2πR. Of course we can swap the circumferences β ↔ 2πR (corresponding
to swapping one space with one (Euclidean) time direction) as pointed out in the
main text. So that we have a torus with circumferences 2πR and β. (and now β is
interpreted as the circumference of the circle on which the QFT lives, with radius
β/(2π), where as 2πR is the length of the compactified “time” direction.).
In a CFT, we also have scale invariance. Thus, we can rescale

(2πR, β) → 2π
R

β
· (2πR, β) =

(
4π2R2

β
, 2πR

)
(15)

so we have a torus with circumferences 4π2R2β and 2πR. This is interpreted as a
CFT again on a spatial circle of radius R but now the time direction is compactified
on a circumference ∼ 1/β,

Z(β,R) = Z

(
4π2R2

β
,R

)
(16)

This is interesting because it relates the infinite temperature limit to the low tem-
perature limit.

(b) The easiest limit is the low temperature limit β → ∞ where Z =
∑

n e
−βEn is

dominated by the state n which lowest energy. For a unitary 2d CFT, this state
has the Casimir energy E0 = − c

12R
. Thus,

Z(β,R) ≈ e
βc
12R (β → ∞) (17)

Using (16), this gives the infinite temperature β → 0 behaviour as well

Z(β,R) ≈ e
4π2R

β
c
12 (β → 0) (18)

To obtain the entropy, we compute the energy density of states defined through

Z(β) =

∫
ρ(E)e−βEdE (19)
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Writing ρ(E) = eS(E) where S is the entropy, we want to solve S such that it gives
the behaviour (18). It is useful to rescale E = Ê/β so that

Z(β) =
1

β

∫
eS(Ê/β)−ÊdÊ (20)

We now perform a saddle point approximation in the large 1/β limit. The integral
will be dominated around the saddle for which

d

dÊ
(S(Ê/β)− Ê) = 0 (21)

It is not hard to convince oneself that S(E) ∼
√
E is the correct choice to reproduce

(18). Indeed, for such a choice the saddle is at Ê ∼ 1/β so that it contributes ∼ e1/β.
Fixing the factors, we obtain

S(E) = 2π

√
cER

3
(22)
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3. Asymptotic charges in gauge theory

(a) The infinitesimal variation of the fields under this transformation is:

δφ = iεφ, δφ? = −iεφ?.

The conserved current is:

jµφ = i (∂µφ?φ− φ?∂µφ) .

The conserved charge associated with this current on a spacelike hypersurface Σ is:

Q1 =

∫
Σ

dD−1x j0 =

∫
Σ

dD−1x i (∂0φ
?φ− φ?∂0φ) .

(b) Given any Lagrangian L depending on a set of fields and their derivatives {φa, ∂µφ
a},

the action variation can be written as

δS =

∫
M

∑
a

δL

δφa
δφa +

δL

δ(∂µφa)
∂µδφ

a

=

∫
M

∑
a

(
δL

δφa
− ∂µ

δL

δ(∂µφa)

)
δφa + ∂µ

(
δL

δ(∂µφa)
δφa

)
=

∫
M

EOM + ∂µS
µ

(23)

(c) From the previous equation, applied to our system, we get (up to an overall minus
sign):

Sµ =
δL

δ(∂µφ)
δφ+

δL

δ(∂µφ?)
δφ? +

δL

δ(∂µAν)
δAν

= gε(x)jµφ + (∂νε(x))F
µν = ε(x)(gjµφ − ∂νF

µν) + ∂ν (ε(x)F
µν)

(24)

Using the equations of motion,

∂νF
µν = gjµφ (25)

Then we get
Sµ = ∂ν (ε(x)F

νµ) (26)

(d) The charge can be found by integrating the current

Q2 =

∫
Σ

S0 =

∫
∂Σ

εF0in
i (27)

where ni is the normal vector to ∂Σ. This shows that charges in gauge theory can
be computed as a boundary integral.

(e) Charges in gauge theory are 0 if the U(1) transformation is a gauge transformation,
i.e. if ε(x)|∂Σ = 0. On the other hand, genuine physical symmetries act non-trivially
on the boundary and are characterised by ε(x)|∂Σ 6= 0, and thus can have a non-zero
charge.

(f) If g → 0, then the fields φ and Aµ decouple, hence the problem is now characterised
by two charges: one associated to the U(1) asymptotic symmetries (also known as
”large gauge transformations”) of the Maxwell field, that are computed as boundary
integrals, and one associated to the U(1) global symmetry of the φ.
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